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Abstract—Due to the high parallelism of belief propagation
(BP) decoding, it is considered as a promising solution for the
decoding latency challenge of long polar codes. However, the
error-correction performance of the classical BP decoding is
inferior to that of the successive cancellation (SC) and the SC list
(SCL) decoding. In this paper, an adaptive BP (ABP) decoding
algorithm is proposed to bridge this performance discrepancy.
It iteratively adjusts the a priori log-likelihood ratios (LLRs) of
error-prone bits, which can be efficiently detected using the frozen
and information processing elements (FIPEs). Moreover, a novel
low-complexity FIPE-based early termination criterion (ETC) is
proposed to further reduce the decoding complexity. It functions
when all the frozen bits in the FIPEs are successfully decoded with
stable LLR magnitudes. Our numerical results show that for the
(1024, 512) polar code, the ABP decoding outperforms the classical
BP decoding by 0.3 dB at the frame error rate (FER) of 10−4 over
the additive white Gaussian noise (AWGN) channel. It can also
achieve up to 78.5% latency reduction over the fast simplified SC
(FSSC) decoding, while maintaining the same performance. The
proposed ETC also exhibits a lower hardware complexity over
the existing G-matrix criterion.

Index Terms—Adjusted min-sum, belief propagation, early
termination criterion, hardware, low-complexity, polar codes.

I. INTRODUCTION

POLAR codes, invented by Arıkan [1], can achieve channel
capacity for binary-input discrete memoryless channels

(B-DMCs), using the efficient successive cancellation (SC)
decoding. However, for short-to-moderate codeword lengths,
performance of the SC decoding is less favorable. To improve
the decoding performance, the SC list (SCL) decoding [2] [3]
and the cyclic redundancy check (CRC) aided SCL (CA-SCL)
decoding [4] were proposed. To reduce decoding latency, the
simplified SC (SSC) decoding [5] and the fast SSC (FSSC)
decoding [6] were proposed. However, due to their sequential
decoding feature, the above SC-based decoding algorithms still
result in an unaffordable decoding latency for long polar codes.

As an alternative, belief propagation (BP) decoding [7] can
be implemented in a parallel manner, yielding its low latency
and high throughput advantages. However, there exists a severe
performance gap between the classical BP and the SC-based
decoding algorithms. To solve this problem, several attempts
[8]–[13] have been proposed. By adding perturbations to the
a priori log-likelihood ratios (LLRs) of the less reliable bits
(LRBs), the post-processing methods [8] [9] can improve the
BP decoding performance. Similar to [8], the BP correction

(BPC) decoding [10] corrects errors by resetting the a pri-
ori LLRs of the unreliable received symbols. However, the
perturbations for the above methods are derived empirically.
As a more radical method, the BP flip (BPF) decoding [11]–
[13] sets the LLRs of the error bits to +∞ or −∞. The BPF
decoding can yield a similar performance as the SCL decoding,
but with an unstable decoding complexity and latency. Another
widely used solution is the BP list (BPL) decoding [14]–[19].
Its advantage lies in the low decoding latency but at the cost
of a high decoding complexity.

Due to the slow convergence of BP decoding, a large number
of iterations is need. The early termination criterion (ETC)
[20]–[23] can be effective in avoiding unnecessary iterations. In
[20], the G-matrix criterion and the minimum LLR (minLLR)
criterion were proposed. Compared with [20], the worst infor-
mation bits (WIB) criterion [21] achieves the same termination
performance with a lower complexity. Other efficient criteria in-
clude the frozen bit error rate (FBER) criterion [22] and the best
frozen bits (BFB) criterion [23]. However, the FBER criterion
requires division operations, which is computationally costly.
For the BFB criterion, it is less effective at the low signal-to-
noise ratio (SNR) region. To address above challenges, a more
efficient ETC is needed for the BP decoding.

Recently, a special processing element (PE), the frozen
and information PE (FIPE) [24], has been characterized for
accurately identifying the erroneous bits. In this paper, we
utilize the detection results of the FIPEs to construct the reliable
index set (RIS). It contains the indices of the identified reli-
able information bits, which are considered being successfully
estimated. Based on this, a novel adaptive BP (ABP) decoder
for improving the decoding performance is proposed. In the
ABP decoding, the a priori LLRs of LRBs within the RIS are
iteratively adjusted, such that they can be correctly decoded.
Our simulation results show that the proposed ABP decoder
can achieve an improved performance over the classical BP
decoder. Furthermore, it yields a similar performance as the
SC decoder at the high SNR region. Moreover, by detecting the
reliability and the LLR of the FIPEs, a new FIPE-based ETC is
designed. It can further facilitate the ABP decoder to achieve a
lower decoding complexity. Compared with the existing ETCs,
such as the G-matrix criterion and the WIB criterion, the
proposed criterion exhibits a lower hardware complexity.
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II. PRELIMINARIES

In this work, we use uN−1
0 to denote the vector

(u0, . . . , uN−1). Let ûi denote the estimation of bit ui. Given
an ordered set B, its cardinality is |B|, and B[i] indicates the
i-th element of B, where 0 ≤ i < |B|. The XOR operation
is denoted as ⊕. The following provides the preliminary
knowledge for polar codes and its BP decoding.

A. Polar Codes
Polar codes are linear block codes characterized by its length

N and dimension K, denoted as P(N,K). Based on the
channel polarization, the indices of N polarized subchennels
can be divided into two disjoint sets. The information set A
contains the indices of the K most reliable subchannels, which
are used to transmit information bits. The remaining N − K
indices form the frozen set AC , which are used to transmit the
frozen bits (usually set as zero). These information bits and
frozen bits constitute the input vector uN−1

0 . Codeword xN−1
0

of the P(N,K) code is generated by xN−1
0 = uN−1

0 G, where
N = 2n and G = F⊗n is the n-th Kronecker power of the
kernel matrix F = [(1, 0), (1, 1)]T . Additionally, the rate of the
P(N,K) code is R = K/N .

B. BP Decoding
The BP decoding can decode information bits parallelly

using the given factor graph (FG) of a polar code. For the
P(N,K) code, the FG consists of (Nn)/2 PEs, and each PE
comprises four nodes. The FG and the PE architecture for the
P(8, 4) code are shown in Fig. 1 (a) and (b), respectively. Note
that the j-th node in the i-th row of the FG is indexed by
(i, j), where 0 ≤ i < N and 0 ≤ j ≤ n. Moreover, there
are two types of messages in each node. Let L(i,j) and R(i,j)

denote the left message and the right message of the node (i, j),
respectively. During BP decoding, messages are propagated and
updated within the PEs, which satisfy

L(i,j) = f
(
L(i,j+1), L(i+2j ,j+1) +R(i+2j ,j)

)
, (1a)

L(i+2j ,j) = f
(
L(i,j+1), R(i,j)

)
+ L(i+2j ,j+1), (1b)

R(i,j+1) = f
(
L(i+2j ,j+1) +R(i+2j ,j), R(i,j)

)
, (1c)

R(i+2j ,j+1) = f
(
L(i,j+1), R(i,j)

)
+R(i+2j ,j), (1d)

where f(a, b) = α sign (a) sign (b)min {|a| , |b|}, and α is a
scaling parameter that is optimized as 0.9375 [20] [25].

For a BP decoder, L(i,n) represents the LLR of the i-th
received symbol yi. The R(i,0) indicates the a priori LLR of
bit ui. If i ∈ A, R(i,0) = 0; otherwise, R(i,0) = +∞. Other
messages are initialized to zero. Moreover, it is worth men-
tioning that L(i,0) indicates the extrinsic LLR of bit ui. During
each iteration, the message propagation starts from right-to-left,
updating the left messages. After that, it propagates from left-
to-right, renewing the right messages. The BP decoding will
terminate only it reaches the maximum number of iterations
Imax or an ETC [20]–[24] is satisfied. Finally, the decoder
delivers the estimated bits ûN−1

0 based on

ûi =

{
0, L(i,0) +R(i,0) ≥ 0,
1, L(i,0) +R(i,0) < 0.
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Fig. 1. Architecture of BP decoding for P(8, 4) with A = {3, 5, 6, 7}. (a)
Factor graph; (b) General PE; (c) FIPE.

C. The FIPEs

Fig. 1(c) illustrates the structure of the FIPEs. In a FIPE,
there is a frozen node in the upper-left corner, and an informa-
tion node in the bottom-left corner [24]. For all FIPEs, we use
the ordered set B to denote the index set of the corresponding
information bits, where B[i] < B[j] if i < j. Thus, for any
i ∈ B, there exist R(i−1,0) = +∞ and R(i,0) = 0. For
simplicity, let FIPE-i denote a FIPE that consists of the frozen
bit ui−1 and the information bit ui.

III. ADAPTIVE BP DECODING

In this section, the ABP decoding is proposed to enhance
the error-correction performance. It adjusts the right message
of the LRBs within the RIS iteratively. The detection results of
the FIPEs will be utilized to identify the reliable information
bits. They form the RIS. The RIS provides the indices of the
LRBs to the ABP decoding.

A. Reliable FIPEs

Let us consider the case that the frozen bit ui−1 in the FIPE-i
(i ∈ B) has been correctly decoded, i.e., L(i−1,0) ≥ 0. In [24],
such FIPE is classified as the reliable FIPE. The following
Propositions 1 and 2 reveal the sufficient condition and the
characteristics of the reliable FIPE, respectively.

Proposition 1. Given a FIPE-i, if L(i−1,1)L(i,1) ≥ 0, it is a
reliable FIPE, where i ∈ B.

Proof: Based on (1a), L(i−1,0) = α sign
(
L(i−1,1)

)
·

sign
(
L(i,1)

)
min

(∣∣L(i−1,1)

∣∣ , ∣∣L(i,1)

∣∣). Given that L(i−1,1)·
L(i,1) ≥ 0, we have L(i−1,0) ≥ 0 and |L(i−1,0)| =
αmin

(∣∣L(i−1,1)

∣∣ , ∣∣L(i,1)

∣∣). Based on (2), the frozen bit ûi−1

can be correctly decoded without the help of its R(i−1,0).
Hence, the FIPE-i is a reliable FIPE.

Proposition 2 ([18] [24]). For the reliable FIPE-i, its in-
formation bit ui can be considered successfully decoded and∣∣L(i,0)

∣∣ ≥ ∣∣L(i−1,0)

∣∣, where i ∈ B.

B. Reliable Index Set

Let the ordered set Bh ⊆ B denote the index set of all
the reliable FIPEs during the h-th BP iteration. Generally, the
set Bh can be constructed based on Proposition 1. However,

2024 IEEE Information Theory Workshop (ITW)

467
Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 24,2025 at 07:27:51 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1: Constructing RIS (J h)

1 Subroutine ConstructRIS (B, S , h):
2 Initialize: Bh ← ∅, J h ← ∅;

// Constructing Bh
3 For i ∈ B do
4 Compute γh

i as in (3);
5 If γh

i = 0 then
6 Bh ← {i} ∪ Bh;
7 Construct J h as in (5);
8 Return J h

this paper introduces a more hardware-friendly method. The
detection equation is simplified as

γh
i = sign

(
L(i−1,1)

)
⊕ sign

(
L(i,1)

)
, i ∈ B, (3)

where γh
i denotes the checking result for the FIPE-i in the h-

th iteration. If γh
i = 0, the FIPE-i is reliable. Otherwise, it is

unreliable. Consequently, the set Bh is constructed by

Bh =
{
i ∈ B : γh

i = 0
}
. (4)

The critical set (CS), denoted as S , is comprised of the index
of the first bit in each of the rate-1 (R1) codes. According to
[12] [26], the probability that the index of the first error bit is
included in S approaches one. Since a FIPE contains only a
single information bit (i.e., size-1 R1 code), it is intuitive that
B ⊆ S . Therefore, based on the detection results of the FIPEs,
e.g., Bh, the reliable estimations can be identified from S .

Let J h denote the RIS obtained in the h-th iteration.
It includes all the bit indices in S that lie between every
consecutive reliable FIPEs B[i] and B[i+1], where 0 ≤ i < |B|.
Hence, the set J h is constructed by

J h =
⋃

{B[i],B[i+1]}∈Bh

{j ∈ S : B[i] < j < B[i+ 1]} . (5)

In particular, when i = |B|−1, we assume that B[i+1] = N−1.
It should be pointed out that both the set B and the set S can
be obtained offline. The above mentioned construction of the
RIS is summarized as in Algorithm 1.

C. ABP Decoding Algorithm

According to (1), in the regular PE (except for the FIPEs), the
values of R(i,1) remain constant, i.e., R(i,1) ∈ {0,+∞}. This is
because during the classical BP decoding, the values of R(i,0)

are fixed and never updated. In [27], it has been shown that the
above mentioned phenomenon would significantly slow down
the convergence and weaken the BP decoding performance.
However, the inefficient propagation can be improved when
the a priori LLRs of the information bits (R(i,0)) are correctly
updated [19] [28]. Due to the bidirectional propagation, for
the BP decoding, the error bits can be corrected by enhancing
the R(i,0) of the reliable bits [8] [29] (not always being zero).
Furthermore, it is worth mentioning that the information bits in
the RIS possess the reliable L(i,0). Inspired by this, the ABP
decoding is proposed. It utilizes the reliable L(i,0) to renew the
R(i,0) in each BP iteration, instead of making R(i,0) fixed.

AMS 

operation

 Framework of the AMS operation

Adjust right 

messages

Adjust right 

messages

Select the least 

reliable bit 

Update

Construct

the RIS (    )

ResetReset

BP 

decoding

(h+1)-th iteration

BP 

decoding

(h+1)-th iteration

BP 

decoding

(h+1)-th iteration

BP 

decoding

h-th iteration

BP 

decoding

h-th iteration

BP 

decoding

h-th iteration

Fig. 2. Block diagram of the proposed ABP decoding.

The block diagram of the proposed ABP decoding is shown
in Fig. 2. In each iteration, the ABP decoding updates L(i,j) and
R(i,j) as in (1). It then invokes the adjusted min-sum (AMS)
operation. Let Rh

(i,j) and Lh
(i,j) denote the R(i,j) and L(i,j) in

the h-th iteration, respectively. Let us further define set F as the
indices of the LRBs, which have been adjusted in the previous
iteration. Furthermore, the set J h\F represents the index set
of unadjusted LRBs. Fig. 2 also illustrates the framework of
the AMS operation, including four key steps:

1) Construct the RIS J h using Algorithm 1;
2) For each unreliable information bit indexed by i ∈ S\J h,

reset its right messages to zero, i.e., Rh+1
(i,0) = 0;

3) Select the least reliable bit indexed by i∗ from the set
J h\F , and update F as F = {i∗} ∪ F ;

4) For each bit indexed by i ∈ J h ∩ F , adjust its right
message Rh+1

(i,0) based on the updated Lh
(i,0), as in (7).

It should be noted that when compared with other information
bits, the LRBs in the RIS are more error-prone in the subse-
quent iterations [13] [29].

In the h-th iteration, if the bit indices from F are no longer
contained in J h, it indicates that the wrong a priori LLRs have
been set for the LRBs. To rectify this, in Step 2), right messages
of the unreliable bits are initialized to zero. In Step 3), the ABP
decoder attempts to correct the least reliable bits that have not
been adjusted in J h. Its selection can be performed based on
the given reliabilities of subchannels rN−1

0 , i.e.,

i∗ = argmin
{
ri, i ∈ J h\F

}
. (6)

After that, Step 4) rectifies those LRBs that are indexed in
J h ∩F by feeding back the reliable left messages, i.e., Lh

(i,0),
into the decoder, and enhancing the right messages as

Rh+1
(i,0) = Lh

(i,0). (7)

As the number of iterations increases, the propagated mes-
sages become more accurate. Hence, the R(i,0) of the infor-
mation bits with lower reliabilities in J h are designed to be
adjusted more frequently. For better understanding, the proce-
dure of the ABP decoding is summarized as in Algorithm 2.
Note that any efficient ETC can be used in the ABP decoding,
and the early termination function is denoted as ETC (·).

IV. THE FIPE BASED ETC

In this section, the characteristics of FIPEs are further intro-
duced. Meanwhile, a new ETC for BP decoding is proposed.
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Algorithm 2: The ABP Decoding

Input: A, AC , B, S , Imax, rN−1
0 , yN−1

0

Output: ûN−1
0

1 Initialize: J 1 ← ∅, F ← ∅;
2 For h← 1 to Imax do
3 Update Lh

(i,j) and Rh
(i,j) as in (1);

4 If ETC(ûN−1
0 ) = true then

5 Return ûN−1
0 ; // Decoding successful

6 Else
// The AMS operation

7 J h ←ConstructRIS(B, S , h); // Step 1)
8 For i ∈ S\J h do
9 Rh+1

(i,0) ← 0; // Step 2)

10 i∗ ← argmin
{
ri, i ∈ J h\F

}
; // Step 3)

11 F ← {i∗} ∪ F ; // Update F
12 For i ∈ J h ∩ F do
13 Rh+1

(i,0) ← Lh
(i,0); // Adjust messages

14 Return ûN−1
0 ; // Decoding failure

The proposed FIPE-based ETC can be efficiently integrated
with the proposed ABP decoding.

A. FIPE-Based ETC

It has been shown in [22] [23] that the characteristics of
frozen bits can serve as a reliable indicator for detecting the
BP decoding convergence. Based on the channel polarization
theory [1], the error probabilities of the frozen bits in FIPEs
are usually less than that of other frozen bits. Hence, it is
reasonable to conjecture that monitoring the FIPEs can offer
a new strategy for terminating the BP decoding.

Let H and D denote the indicators for describing the
proposed FIPE-based ETC, which are defined as

H ≜
h∑

h̃=h−φ+1

∑
i∈B

γh̃
i (8)

and

D ≜
h∑

h̃=h−φ+1

∑
i∈B

∣∣∣Lh̃
(i,0) − Lh̃−1

(i,0)

∣∣∣, (9)

respectively, where φ denotes the number of consecutive iter-
ations. Note that H and D represent the reliability of FIPEs
and the convergence properties of their LLRs, respectively.

In each BP iteration, the value of γh
i is evaluated by (3).

When the above evaluations are completed, the FIPE-based
ETC computes H and D according to (8) and (9), respectively.
If H = 0 and D = 0, it indicates that over the φ consecutive
iterations, all the frozen bits in the FIPEs are successfully
decoded with stable LLRs. In this case, the decoding can be
terminated. Note that since γh

i has been computed in Algorithm
1, the proposed criterion is more suitable for the ABP decoder.

B. Complexity Evaluation

This subsection evaluates the complexity of the FIPE-based
ETC by the number of hardware operations. For each FIPE,

TABLE I
HARDWARE CONSUMPTIONS OF DIFFERENT ETCS FOR ONE ITERATION

USING THE ABP DECODER

Adder OR XOR Comp
Proposed 2 |B|+ φ− 1 |B|+ φ− 2 − −
G-matrix 2N − Nn/2 3N
WIB [21] 2N/8 + φ − N/8 −
BFB [22] − N/16− 1 − N/16

it requires one 2-input XOR gate for computing (3). Thus,
computing H , as in (8), requires |B| XORs. However, please
note that since γh

i is reused in the ABP decoder, implying
the FIPE-based ETC does not require any XOR operation for
obtaining H . Moreover, due to γh

i ∈ {0, 1}, the 2-input OR gate
can perform the addition operations in (8). Thus, computing
H requires |B| + φ − 2 ORs. Considering (9), it requires
2 |B| + φ − 1 Adders for computing D. Thus, the number of
addition operations are 2 |B|+φ−1. In particular, the proposed
criterion does not require any comparison (Comp) operation.

Table I shows the hardware complexity of different ETCs
during one iteration using the ABP decoder. It can be seen
that compared with other ETCs, the FIPE-based ETC does not
require any XOR or Comp operations, yielding a lower hard-
ware resource cost than those of others. Moreover, the hardware
complexity of the proposed criterion increases linearly with |B|.
In order to reduce complexity, we can only detect a portion of
the bits from the set B with lower reliabilities.

V. SIMULATION RESULTS

This section presents simulation results of the proposed
ABP decoder and that with the FIPE-based ETC. The 5G
standard polar codes [30] are considered. The length-2048
polar code is constructed by the Gaussian approximation (GA)
[31] with a design-SNR of 2 dB. The polar codes with
N ∈ {512, 1024, 2048} and R ∈ {1/4, 1/2, 2/3, 3/4} are
considered. The codewords are modulated using the binary
phase shift keying (BPSK) and transmitted over the additive
white Gaussian noise (AWGN) channel. The maximum number
of iterations Imax for the ABP decoding is 100.

A. Performance of the ABP Decoder

Fig. 3 shows the frame error rate (FER) performance of
the proposed ABP decoding against the state-of-the-art BP
decoding [20] and the SC decoding. As shown in Fig. 3(a),
the ABP decoding outperforms the BP decoding for various
codeword lengths N ∈ {512, 1024, 2048} and rate R = 1/2.
For the P(1024, 512) code, the ABP decoding achieves a
performance gain of 0.3 dB at the FER of 10−4 over the
BP decoding. Moreover, in high SNR regime (e.g., SNR >
3 dB), performance of the ABP decoding is similar to that of
the SC decoding. Fig 3(b) compares the ABP decoding and
BP decoding for rate R ∈ {1/4, 2/3, 3/4} and N = 1024. The
ABP decoding still exhibits its performance advantage, yielding
performance gains of at least 0.15 dB over the BP decoding.

In this paper, the decoding latency is measured by the
average number of required clock cycles (CCs). The latency
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Fig. 3. Performance comparison between the BP, the SC and the proposed
ABP decoding under various N and R. The ETC is the G-matrix criterion.

TABLE II
AVERAGE NUMBER OF DECODING CCS FOR THE P(1024, 512) CODE

SNR (dB) 2.5 3 3.5 4
FSSC [6] 427 427 427 427

BP (G-matrix) [20] 174 124 102 88
ABP (G-matrix) 172 128 106 92

of the FSSC decoder is evaluated based on [6]. Let Iavg denote
the average number of iterations. Thus, the latency of the BP
decoder is 2Iavg log2 N [20]. In each iteration, the ABP decoder
requires 2 log2 N CCs to update messages. Since the AMS and
the ETC can perform in parallel, additional one CC is needed.
Overall, the average latency required by the ABP decoder is

τ̄ABP = Iavg · (2log2N + 1) . (10)

Table II presents the average latency for different polar
decoders in decoding the P(1024, 512) code. It is notable that
the decoding latency of the ABP decoder is slightly higher than
the BP decoder. They all require less than 200 CCs for the
SNR range of 2.5 ∼ 4 dB. As the SNR increases, the average
number of iterations of the ABP decoder decreases rapidly,
leading to a smaller number of required CCs. Therefore, its
latency advantage becomes more significant in the high SNR
region. In particular, at the SNR of 4 dB, the ABP decoder
consumes only 92 CCs for decoding the P(1024, 512) code,
while the FSSC decoder requires 427 CCs. As a result, the
ABP decoder realizes a 78.5% latency reduction over the FSSC
decoder, while preserving the SC decoding performance.

B. Performance of the FIPE-Based ETC

Fig. 4 shows the performance and the average iterations of
the ABP decoder using different ETCs for the P(1024, 512)
code, where |B| = 54. For the FIPE-based ETC, the number of
detected bits in B is 35, i.e., NFIPE = 35. Let NWIB and NBFB
denote the number of detected bits for the WIB and the BFB
criteria, respectively. In the simulation, it is set NWIB = 128
and NBFB = 64. Note that the minimum threshold of LLR
θ in the BFB criterion is 13 [23]. Fig. 4(a) shows that the
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Fig. 4. Performance comparision under various ETCs using the ABP decoder
for the P(1024, 512) code.
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Fig. 5. Hardware complexity of the ABP decoder using various ETCs for the
P(1024, 512) code.

proposed criterion effectively terminates the decoding process
with negligible FER degradation for φ ∈ {1, 2, 5}. Fig. 4(b)
further shows that the proposed criterion achieves an iteration
number slightly higher than that of the G-matrix criterion, but
lower than that of the other ETCs. In particular, when φ =
1, the average iterations for the proposed criterion are lower
than the WIB criterion (φ = 6) by 49.2%. Although the BFB
criterion (φ = 7) yields a similar performance as the proposed
criterion when SNR < 3 dB, it requires a larger number of
iterations. Furthermore, for the proposed criterion, the Iavg is
mainly affected by the value of φ. Based on these analyses, the
optimal setting for the FIPE-based criterion is φ = 1.

Fig. 5 shows the hardware complexity for different ETCs
during a single iteration using the ABP decoder, where N =
1024. When NFIPE = 35 and φ = 1, the FIPE-based ETC
requires 70 Adders and 34 ORs, which is lower than that of
the G-matrix, the WIB (φ = 6), and the BFB (φ = 7) criteria.
Fig. 4 and 5 show that the proposed criterion has the lowest
hardware complexity compared with the existing ETCs, such as
the G-matrix, the WIB, and the BFB criteria, while maintaining
the error-correction performance.
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